Weighted efficient domination problem on some perfect graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted efficient domination problem on some perfect graphs

Given a simple graph G = (V; E), a vertex v ∈ V is said to dominate itself and all vertices adjacent to it. A subset D of V is called an e cient dominating set of G if every vertex in V is dominated by exactly one vertex in D. The e cient domination problem is to 3nd an e cient dominating set of G with minimum cardinality. Suppose that each vertex v ∈ V is associated with a weight. Then, the we...

متن کامل

Weighted Independent Perfect Domination on Cocomparability Graphs

*Supported partly by the National Science Council of the Republic of China under grant NSC82-0208-M009-050. IDIMACS permanent member. lCurrent address: Laboratory for Computer Science, MIT, Cambridge, MA 02139. Emaih [email protected].

متن کامل

Perfect edge domination and efficient edge domination in graphs

Let G = (V; E) be a /nite and undirected graph without loops and multiple edges. An edge is said to dominate itself and any edge adjacent to it. A subset D of E is called a perfect edge dominating set if every edge of E \ D is dominated by exactly one edge in D and an e cient edge dominating set if every edge of E is dominated by exactly one edge in D. The perfect (e cient) edge domination prob...

متن کامل

Efficient and Perfect domination on circular-arc graphs

Given a graph G = (V,E), a perfect dominating set is a subset of vertices V ′ ⊆ V (G) such that each vertex v ∈ V (G) \ V ′ is dominated by exactly one vertex v ∈ V . An efficient dominating set is a perfect dominating set V ′ where V ′ is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remain...

متن کامل

Roman domination perfect graphs

A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2002

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(01)00184-6